211 research outputs found

    Alpine tectonic wedging and crustal delamination in the Cantabrian Mountains (NW Spain)

    Get PDF
    The Cantabrian Mountains have been interpreted as a Paleozoic basement block uplifted during an Alpine deformation event that led to the partial closure of the Bay of Biscay and the building of the Pyrenean range in the Cenozoic. A detailed interpretation of deep seismic reflection profile ESCIN-2 and the two-dimensional seismic modelling of the data allowed us to construct a N-S geological cross section along the southern border of the Cantabrian Mountains and the transition to the Duero Cenozoic foreland basin, highlighting the Alpine structure. The proposed geological cross section has been constrained by all geophysical data available, including a 2-D gravity model constructed for this study as well as refraction and magnetotelluric models from previous studies. A set of south-vergent thrusts dipping 30 to 36° to the north, cut the upper crust with a ramp geometry and sole in the boundary with the middle crust. These thrusts are responsible for the uplift and the main Alpine deformation in the Cantabrian Mountains. A conspicuous reflective Moho shows that the crust thickens northwards from the Duero basin, where subhorizontal Moho is 32 km deep, to 47 km in the northernmost end of ESCIN-2, where Moho dips to the north beneath the Cantabrian Mountains. Further north, out of the profile, Moho reaches a maximum depth of 55 km, according to wide-angle/refraction data. ESCIN-2 indicates the presence of a tectonic wedge of the crust of the Cantabrian margin beneath the Cantabrian Mountains, which is indented from north to south into the delaminated Iberian crust, forcing its northward subduction. © 2016 Author(s).This study was part of the PhD thesis of J. Gallastegui and was supported by a FPU grant and research projects GEO 90-0660-1086 and PB92-1013 funded by CICYT (Committee of Science and Technology of the Spanish Ministry of Education and Science) and FICYT (Foundation for the Science and Technologic Research, Government of Asturias, Spain). Part of the study has also been financed by the Spanish Ministry of Science through the “TOPOIBERIA” Consolider Project (ref:MEC-06-CSD2006-0041) and the MISTERIOS Project (ref:MINECO-13-CGL2013-48601-C2).Peer reviewe

    Evidencing a prominent Moho topography beneath the Iberian-Western Mediterranean Region, compiled from controlled-source and natural seismic surveys

    Get PDF
    The complex tectonic interaction processes between the European and African plates at the Western Mediterranean since Mesozoic times have left marked imprints in the present-day crustal architecture of this area, particularly as regarding the lateral variations in crustal and lithospheric thicknesses. The detailed mapping of such variations is essential to understand the regional geodynamics, as it provides major constraints for different seismological, geophysical and geodynamic modeling methods both at lithospheric and asthenospheric scales. Since the 1970s, the lithospheric structure beneath the Iberian Peninsula and its continental margins has been extensively investigated using deep multichannel seismic reflection and refraction/wide-angle reflection profiling experiments. Diaz and Gallart (2009) presented a compilation of the results then available beneath the Iberian Peninsula. In order to improve the picture of the whole region, we have now extended the geographical area to include northern Morocco and surrounding waters. We have also included in the compilation the results arising from all the seismic surveys performed in the area and documented in the last few years. The availability of broad-band sensors and data-loggers equipped with large storage capabilities has allowed in the last decade to boost the investigations on crustal and lithospheric structure using natural seismicity, providing a spatial resolution never achieved before. The TopoIberia-Iberarray network, deployed over Iberia and northern Morocco, has provided a good example of those new generation seismic experiments. The data base holds∼300 sites, including the permanent networks in the area and hence forming a unique seismic database in Europe. In this contribution, we retrieve the results on crustal thickness presented by Mancilla and Diaz (2015) using data from the TopoIberia and associated experiments and we complement them with additional estimations beneath the Rif Cordillera arising from more recent deployments. We have now included also the sparse results in the region previously published, with the aim of checking the consistency of the results, hence giving more strength to the retained features. Combining the Moho depth values coming from controlled source and natural seismicity experiments has finally allowed us to build up a high quality grid of the region at crustal scale, which is completed in the non-sampled areas by the wide-scale CRUST1.0 model. The final picture evidences the geodynamic diversity of the area, including crustal imbrication in the Pyrenean range, a large and relatively undisturbed Variscan Massif in the center of Iberia and a probable delamination process beneath the Gibraltar Arc. Crustal thicknesses range from values around 15 km in continental margins (Cantabrian margin and Valencia Trough) to depths exceeding 50 km beneath the Pyrenees and the Rif Cordillera. A new 3D model of those variations is presented here to illustrate and summarize such large variationsPeer Reviewe

    Geometría de la raíz cortical bajo la Cordillera del Rif

    Get PDF
    The seismic experiments conducted in northern Morocco during the last decade have provided detailed information on the geometry of the crust beneath the Rif Cordillera. In the mainframe of the RIFSIS project, 2D models of velocity / depth along two 300 km-long profiles oriented NS and EW, have revealed the presence of a thickened area, with depths of Moho near 50 km under the External Rif. The crustal geometry of this area has also been investigated using passive seismic data using methods based on the analysis of receiver functions and obtaining consistent values. The origin of the thickening under the External Rif is related to the slab of Alboran, which would still be connected to the lithosphere under this area, hence causing the crustal deformation.La financiación para este trabajo proviene del Ministerio de Economía mediante los proyectos CGL2009-09727 (RIFSIS), CSD 2006-00041 (TopoIberia), CGL2007-63889 (SIMA), CGL2008-3474 (TopoMed) y de la subvención de la Generalitat de Catalunya 2009SGR996. Hemos utilizado también datos del proyecto PICASSO, financiado por el proyecto EAR0808939 de la NSF de Estados UnidosPeer Reviewe

    Constraining the crustal root geometry beneath Northern Morocco

    Get PDF
    Consistent constraints of an over-thickened crust beneath the Rif Cordillera (N. Morocco) are inferred from analyses of recently acquired seismic datasets including controlled source wide-angle reflections and receiver functions from teleseismic events. Offline arrivals of Moho-reflected phases recorded in RIFSIS project provide estimations of the crustal thicknesses in 3D. Additional constraints on the onshore-offshore transition are inferred from shots in a coeval experiment in the Alboran Sea recorded at land stations in northern Morocco. A regional crustal thickness map is computed from all these results. In parallel, we use natural seismicity data collected throughout TopoIberia and PICASSO experiments, and from a new RIFSIS deployment, to obtain receiver functions and explore the crustal thickness variations with a H-κ grid-search approach. This larger dataset provides better resolution constraints and reveals a number of abrupt crustal changes. A gridded surface is built up by interpolating the Moho depths inferred for each seismic station, then compared with the map from controlled source experiments. A remarkably consistent image is observed in both maps, derived from completely independent data and methods. Both approaches document a large crustal root, exceeding 50. km depth in the central part of the Rif, in contrast with the rather small topographic elevations. This large crustal thickness, consistent with the available Bouguer anomaly data, favors models proposing that the high velocity slab imaged by seismic tomography beneath the Alboran Sea is still attached to the lithosphere beneath the Rif, hence pulling down the lithosphere and thickening the crust. The thickened area corresponds to a quiet seismic zone located between the western Morocco arcuate seismic zone, the deep seismicity area beneath western Alboran Sea and the superficial seismicity in Alhoceima area. Therefore, the presence of a crustal root seems to play also a major role in the seismicity distribution in northern Morocco.Funding for this project has been available from the Spanish Ministry of Science and Innovation under grants: CGL2009-09727 (RIFSIS), CSD 2006-00041 (TopoIberia), CGL2007-63889 (SIMA), and CGL2008-3474 (TopoMed), and by Generalitat de Catalunya grant: 2009SGR996. We have also used data from the PICASSO project, founded by the U.S. NSF grant EAR0808939.Peer reviewe

    Uppermost mantle seismic velocity and anisotropy in the Euro-Mediterranean region from Pn and Sn tomography

    Full text link
    In the last 10-15 years, the number of high quality seismic stations monitoring the Euro-Mediterranean region has increased significantly, allowing a corresponding improve in structural constraints. We present here new images of the seismic velocity and anisotropy variations in the uppermost mantle beneath this complex area, compiled from inversion of Pn and Sn phases sampling the whole region. The method of Hearn (1996) has been applied to the travel time arrivals of the International Seismological Center catalog for the time period 1990-2010. A total of 579,753 Pn arrivals coming from 12,377 events recorded at 1.408 stations with epicentral distances between 220 km and 1400 km have been retained after applying standard quality criteria (maximum depth, minimum number of recordings, maximum residual values¿). Our results show significant features well correlated with surface geology and evidence the heterogeneous character of the Euro-Mediterranean lithosphere. The station terms reflect the existence of marked variations in crustal thickness, consistent with available Moho depths inferred from active seismic experiments. The highest Pn velocities are observed along a continuous band from the Po Basin to the northern Ionian Sea. Other high velocity zones include the Valencia Through, the southern Alboran Sea and central part of the Algerian margin. Most significant low velocity values are associated to orogenic belts (Betics, Pyrenees, Alps, Apennines and Calabrian Arc, Dinarides-Hellenides), and low velocity zones are also identified beneath Sardinia and the Balearic Islands. The introduction of an anisotropic term enhances significantly the lateral continuity of the anomalies, in particular in the most active tectonic areas. Pn anisotropy shows consistent orientations sub-parallel to major orogenic structures, such as Betics, Apennines, Calabrian Arc and Alps. The Sn tomographic image has lower resolution but confirms independently most of the features evidenced in the Pn tomography. Even if both topographies are grossy similar, tectonically stable areas tend to show higher Vs, while the most active zones have lower values

    A refraction/wide-angle reflection seismic profile through the Iberian Chain: preliminary report

    Get PDF
    As a result of the Eurasian and African plates convergence, Tertiary intraplate deformation of the Iberian plate gave rise to the basement-involved thrust-system of the Iberian Chain. Subsequently, a crustal thickening beneath the Iberian Chain was produced, as deduced from Bouguer anomaly maps. A very preliminary interpretation of a new seismic profile through the Iberian Chain is presented, which leads us to infer a crustal thickening beneath the central part of the profile, where Moho depths of at least 40 km should be reached

    Mapping the onshore/offshore crustal transition at the Westernmost Mediterranean from seismic profiling

    Get PDF
    Cembrowski, Marcel... et. al.-- European Geosciences Union General Assembly 2013, 7-12 April, Vienna, Austria.-- 1 pageThe evolution of theWesternMediterranean is strongly affected by the collision of the African and Eurasian plates. The plate boundary as seen from earthquakes is diffuse over a wide area extending north and south of Gibraltar strait. The Western end of the Mediterranean is delineated by the Gibraltar Arc System, comprising the arcuate Spanish Betic and Moroccan Rif Mountain Belts, together with the Alboran-Sea Basin in-between. The extension of the Alboran Basin which started from Late Eocene and which coexisted with the Africa -Europe conversion is still under debate and is one of the key points to constrain the evolution of the Western Mediterranean. This motivated our interest to map the still unknown crustal transition from the Betic-Rif chain into the Alboran Sea, taking advantage of the coincidence in time (October 2011) of two seismic experiments in the area, on land (Rifsis project) and at sea (Gassis-WestMed project). For this purpose we deployed several tens of seismic stations, both in Morocco and Spain, to record the air-gun shooting (every 50 m) of the Sarmiento de Gamboa Spanish vessel performing multichannel reflection profiles at the Alboran sea, and hence to extend these marine lines to wide-angle distances in-land. The airguns were calibrated for the near zero-offset marine reflection study and it turns out to be difficult to observe clear signals on the records in-land at offsets larger than about 70 km. The data has therefore been processed with a frequency-dependent lateral coherence filter to enhance coherent reflection/refraction signals through the frequency-dependent attenuation of incoherent noise and signals. This processing has permitted to track signals (seismic energy) up to more than 200 km on some profiles. Hence, a classical procedure of forward modeling (ray tracing approach) to fit the travel times of the identified wide-angle phases is now underway, taking advantage of the sedimentary/basement sequences inferred from the multichannel sections to constrain the upper part of the velocity-depth model. The first structural results delineate significant lateral variations in crustal depths, particularly at the Rif-Alboran transition. In our presentation we will show and discuss data processing examples which enabled signal detection to large offsets, the signal identification and their interpretation, and the different 2-D cross sections which image the crustal transition to the Alboran BasinPeer Reviewe

    FROM THE ATLAS TO THE RIF A CRUSTAL SEISMIC IMAGE ACROSS MOROCCO

    Get PDF
    The velocity structure of the crust and the geometry of the Moho across Morocco has been the main target of two recently acquired wide-angle seismic reflection transects. One is the SIMA experiment which provided seismic constraints beneath the Atlas Mountains and the second has been the RIFSEIS experiment which sampled the RIF orogen. Jointly these controlled source wide-angle seismic reflection data results in an almost 700 km, seismic profile going from the the Sahara craton across the High and Middle Atlas and Rif Mountain till the Gibraltar-Arc (Alboran). Current work on the interpretation of the seismic data-set is based on forward modeling, ray-tracing, as well as low fold wide-angle stacking. The data has resulted in a detailed crustal structure and velocity model for the Atlas Mountains and a 700 km transect revealing the irregular topography of the Moho beneath these two mountain orogens. Results indicate that the High Atlas features a moderate crustal thickness and that shortening is resolved at depth through a crustal root where the Saharan crust under-thrusts below the Moroccan crust, defining a lower crust imbrication which locally places the Moho boundary at, approximately, 40 km depth. The P-wave velocity model is characterized, in averaged, by relatively low velocities. These low deep crustal velocities together with other geophysical observables such as: conductivity estimates derived from Mt measurements; moderate Bouguer gravity anomaly; surface exposures of recent alkaline volcanics; lead the interpretation to propose that partial melts are currently emplaced in the deep crustal levels and in the upper mantle. The Moho discontinuity defines a crust which is in average relatively thin beneath the Atlas which is almost a 4000 m high orogenic belt. The resulting model supports existence of mantle upwelling as a possible mechanism that contributes, significantly, to maintain the High Atlas topographyPeer Reviewe

    The contribution of the seismic component of Topo-Iberia to the imaging of the deep structure of the Iberian Peninsula and North Morocco

    Get PDF
    Topo-Iberia has been a large-scale Spanish project running from 2007 to 2013 that integrated more than 150 researchers on Earth Sciences. One of its key assets was the management of an observatory platform, named IberArray, aimed to provide new geophysical datasets (seismic, GPS, MT) to constrain the structure of Iberia with unprecedented resolution. The IberArray seismic pool was composed by 70+ BB stations, covering the study area in 3 deployments with a site-density of 60km x 60km. The data base holds ~300 sites, including the permanent networks in the area. Hence it forms a unique seismic database in Europe that allows for multiple analyses to constrain the complex geodinamics of the Western Mediterranean. A summary of new results coming from different techniques is presented here. The SKS splitting analysis has provided a spectacular image of the rotation of the fast velocity direction along the Gibraltar Arc. In central and northern Iberia, the fast polarization directions are close to EW, consistently with global mantle flow models considering contributions of surface plate motion, density variations and net lithosphere rotation. Those results suggest an asthenospheric origin of the observed anisotropy related to present-day mantle flow. Receiver functions have revealed the crustal thickness variations beneath the Atlas, Rif and southern Iberia, evidencing a relevant crustal root beneath the Rif, in agreement with recent, high- density active seismic experiments. The Variscan Iberian massif shows a flat Moho discontinuity, while the areas reworked in the Alpine orogeny show a slightly thicker crust. Beneath N Iberia, the imbrication of the Iberian and Eurasian crusts results in complex receiver functions. Depths exceeding 45 km are observed along the Pyrenean range, while the crust thins to values of 26-28 km close to the Atlantic coasts. The geometry of the 410-km and 660-km discontinuities has been investigated using novel cross-correlation/stacking techniques. Ambient noise tomography allows to identify the main sedimentary basins and to discriminate between the Variscan and the Alpine reworked areas. Local body-wave tomography in North Morocco has improved the location of the small magnitude events on the area and the details of the crustal structure. Teleseismic tomography has confirmed, using an independent data set, the presence of a high-velocity slab beneath the Gibraltar Arc.Peer Reviewe

    Coda wave attenuation tomography in Northern Morocco

    Get PDF
    In this study we focused on seismic attenuation (1/ Q) tomography in Northern Morocco. For this purpose, two different models are employed: The Single Backscattering model hypothesis of Aki and Chouet (1975) to calculate values of Coda Q (Q) and the Back-projection technique of Xie and Mitchell (1990) to estimate lateral variation in Q via a tomographic inversion. For this investigation, the Coda Q method is applied to a number of 94 local earthquakes with a magnitude between Ml=0.7 and Ml=4. The digital seismograms of these earthquakes were recorded during the year 2008 by both local temporary and permanent broadband seismic station network deployed in Northern of Morocco. The Q quality factor values have been computed at central frequencies 0.75, 1.5, 3, 6 and 12 Hz. The lapse time windows are restricted to 30s in order to sample the earth's crust only. The Q results indicate that strong frequency dependence follow a power law for the entire area. The preliminary results of seismic Coda Q attenuation tomography shows a dependence at each frequency band, between seismic attenuation and the geology structure units in the study area, especially in the region of Al Hoceima and the eastern part of the Rif which are characterized by high attenuation values due to active faults area, while low attenuation values are seen in the west and the south of the Rif in high frequencies.Peer Reviewe
    corecore